On Local Features for Face Verification
نویسندگان
چکیده
We compare four local feature extraction techniques for the task of face verification, namely (ordered in terms of complexity): raw pixels, raw pixels with mean removal, 2D Discrete Cosine Transform (DCT) and local Principal Component Analysis (PCA). The comparison is performed in terms of discrimination ability and robustness to illumination changes. We also evaluate the effectiveness of several approaches to modifying standard feature extraction methods in order to increase performance and robustness to illumination changes. Results on the XM2VTS database suggest that when using a Gaussian Mixture Model (GMM) based classifier, the raw pixel technique provides poor discrimination and is easily affected by illumination changes; the mean removed raw pixel technique provides performance that is fairly close to 2D DCT and local PCA, but is considerably affected by illumination changes. The performance of 2D DCT and local PCA techniques is quite similar, suggesting that the 2D DCT technique is to be preferred over the local PCA technique, due to the lower complexity of the 2D DCT. Both 2D DCT and local PCA techniques are considerably more robust to illumination changes compared to the raw pixel techniques. Modifying the 2D DCT and local PCA techniques by removing the first coefficient, which is deemed to be the most affected by illumination changes, clearly enhances robustness; removing more than the first coefficient causes a noticeable reduction in performance on clean images and provides no further gains in robustness. Compared to just throwing out the first coefficient, the use of deltas can achieve a small increase in performance and robustness. Lastly, we suggest that it is more appropriate to use analysis blocks of size 8 × 8 (as opposed to 16 × 16) with 2D DCT decomposition; out of the 64 resulting coefficients, the second through to 21-st (resulting in 20 dimensional feature vectors) are the most robust to illumination changes while providing good discriminatory information.
منابع مشابه
Local Large-Margin Multi-Metric Learning for Face and Kinship Verification
Metric learning has attracted wide attention in face and kinship verification and a number of such algorithms have been presented over the past few years. However, most existing metric learning methods learn only one Mahalanobis distance metric from a single feature representation for each face image and cannot make use of multiple feature representations directly. In many face-related tasks, w...
متن کاملA Novel Approach for Face Recognition Using PCA and Artificial Neural Network
Face recognition is a biometric tool for verification and authentication a facial recognition based verification system can further be deemed a computer application for automatically verifying or identifying a person in a digital image. Analytic (local features based) and holistic (global features based) are the two common approaches employed for face recognition approaches with acceptable succ...
متن کاملOn the Use of External Face Features for Identity Verification
In general automatic face classification applications images are captured in natural environments. In these cases, the performance is affected by variations in facial images related to illumination, pose, occlusion or expressions. Most of the existing face classification systems use only the internal features information, composed by eyes, nose and mouth, since they are more difficult to imitat...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملInformation Fusion for Local Gabor Features Based Frontal Face Verification
We address the problem of fusion in a facial component approach to face verification. In our study the facial components are local image windows defined on a regular grid covering the face image. Gabor jets computed in each window provide face representation. A fusion architecture is proposed to combine the face verification evidence conveyed by each facial component. A novel modification of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004